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ABSTRACT
Sequential recommender systems (SRSs) aim to predict the subse-
quent items which may interest users via comprehensively model-
ing users’ complex preference embedded in the sequence of user-
item interactions. However, most of existing SRSs often model
users’ single low-level preference based on item ID information
while ignoring the high-level preference revealed by item attribute
information, such as item category. Furthermore, they often uti-
lize limited sequence context information to predict the next item
while overlooking richer inter-item semantic relations. To this end,
in this paper, we proposed a novel hierarchical preference model-
ing framework to substantially model the complex low- and high-
level preference dynamics for accurate sequential recommendation.
Specifically, in the framework, a novel dual-transformer module
and a novel dual contrastive learning scheme have been designed
to discriminatively learn users’ low- and high-level preference and
to effectively enhance both low- and high-level preference learn-
ing respectively. In addition, a novel semantics-enhanced context
embedding module has been devised to generate more informative
context embedding for further improving the recommendation per-
formance. Extensive experiments on six real-world datasets have
demonstrated both the superiority of our proposed method over
the state-of-the-art ones and the rationality of our design.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
Sequential Recommender Systems (SRSs) aim to predict the next
item which may interest a user via modeling her/his dynamic and
timely preference. Such preference is usually modeled through a
sequence of historical user-item interactions. Due to their strength
of well-capturing users’ dynamic and timely preferences, SRSs are
able to provide accurate and timely recommendations [30].

In recent years, SRSs have attracted increasing attention from
both academia and industry. Hence, a variety of SRS models includ-
ing both shallow and deep models have been proposed to improve
the performance of sequential recommendations. Specifically, Re-
current Neural Networks built on Gate Recurrent Units (GRU) have
been employed to model the long- and short-term point-wise se-
quential dependencies over user-item interactions for next-item rec-
ommendations [9, 21]. Convolutional Neural Network (CNN) [39],
self-attention [12, 28, 29] and Graph Neural Network [27, 43] mod-
els have been incorporated into SRSs for capturing more complex
sequential dependencies (e.g., collective dependencies) for further
improving the recommendation performance. However, despite the
remarkable performance has been achieved, some significant gaps
still exist in existing SRS methods, which greatly limit the further
improvement of the recommendation performance.

First, most of the existing SRS methods model a user’s prefer-
ences by only relying on the low-level and specific ID information
of items while overlooking the informative high-level signals, such
as item category. However, (Gap 1) such a practice cannot accurately
and comprehensively capture a user’s complex hierarchical prefer-
ence dynamics. The reason is two-fold: (1) On one hand, a user’s
preference is essentially hierarchical with multi-granularity, includ-
ing both high-level preference towards different categories of items
(e.g., Alice may like electronic products from "Apple" brand) and
low-level preference towards different items within each category
(e.g., Alice may particularly like iPhone-13) [45]. However, item ID
information can indicate the low-level preference towards specific
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Figure 1: Alice’s hierarchical preference dynamics through
a sequence of purchased items. Alice’s low-level preference
indicated by item ID changes sharply while her high-level
preference indicated by category changes smoothly.

items only and thus the high-level preference has been ignored. (2)
On the other hand, the changes of preference overtime at the low
level are much faster than those at the high level. Such a difference
is of great significance to precisely characterize a user’s preference
dynamics in SRSs but has been ignored by existing SRSs built on
item ID information only. For instance, as shown in Figure 1, when
looking at Alice’s successive purchases of iPhone and Airpods, her
low-level preference has changed from one item to another, how-
ever, her high-level preference actually has not changed since she
keeps focusing on the category of "Electronics".

Second, the user-item interactions in the sequential recommen-
dation are often limited and sparse, impeding the well learning of
users’ preferences. To alleviate this problem, Contrastive Learn-
ing (CL) has been introduced to SRSs to enhance user preference
modeling by introducing more supervision signals via data aug-
mentation [22, 44]. However, (Gap 2)most of the CL-based SRSs only
involve a single contrast based on the low-level preference indicated
by item ID information, overlooking the contrast built on high-level
preference indicated by item category information. As a result, the
high-level preference indicating users’ relatively stable intention
and demand may not be substantially learned, especially on highly
sparse datasets [2, 14]. In addition, the lack of contrast on the item
categorical level may also lose some important constraint signal
to connect (resp. distinguish) items from the same (resp. different)
categories, further impeding the recommendation performance.

Finally, in SRSs, the contextual information embedded in a user-
item interaction sequence is the key signal to guide the prediction
of the next item [9, 10, 16, 32, 41]. However, in most existing SRSs,
(Gap 3) such contextual information is often learned from item IDs
without the consideration of richer semantic relations between items,
resulting in un-informative context embedding and thus impeding
next-item recommendations. This triggers the urgent need for more
effective context embedding to comprehensively capture complex
item characteristics and inter-item relations in the sequence con-
text.

Aiming at bridging the aforementioned three significant gaps in
existing SRS works, we propose a novel Hierarchical Preference
modeling (HPM) framework for accurate sequential recommen-
dations. In HPM, there are mainly three novel modules that are
particularly designed to address the three gaps respectively. To be
specific, to address the first gap, we design a Dual-Transformer
(DT) module to comprehensively model both the low-level (i.e.,
item level) preference dynamics and high-level (i.e., category level)
preference dynamics. To address the second gap, we propose a
novel Dual-Contrastive Learning (DCL) scheme to better learn

users’ two-level preferences via the contrast on both the item level
and category level.

To bridge the third gap, we devise a novel Semantics-enhanced
Context Embedding Learning (SCEL) module to well capture
and incorporate the hidden semantic relations between items to gen-
erate more informative sequence context embedding for next-item
prediction. Here, semantic relations refer to substitute/complementary
relation between items, which are extracted from interaction data
like co-clicked/co-purchased items by following common prac-
tice [7, 24, 25]. These three modules are closely related and work
collaboratively towards better users’ hierarchical preference learn-
ing for accurate next-item prediction.

The main contributions of this work are summarized below:
• Weproposemodeling hierarchical preference dynamics for better-
capturing users’ timely and dynamic preferences for accurate
sequential recommendations. Accordingly, we devise a novel
hierarchical preference modeling (HPM) framework.

• We design a novel dual-transformer module and a novel dual
contrastive learning scheme to equip the HPM framework. The
former can discriminatively learn users’ low- and high-level pref-
erences while the latter can effectively enhance both low- and
high-level preference learning without manually corrupting the
original sequence data.

• We propose a novel semantics-enhanced context embedding mod-
ule to generate more informative context embedding for further
improving the recommendation performance.

2 RELATEDWORK
2.1 Sequential Recommendation
Sequential recommendation aims to leverage users’ historical inter-
actions to capture users’ dynamic preferences for next-item predic-
tion. Rendle et al. [20] propose a first-order Markov chain-based
sequential recommendation method via modeling the transitions
between items over a sequence of baskets. After that, to capture
high-order dependencies over items, He et. al. [8] propose a higher-
order Markov chain-based model for sequential recommendations.
In recent years, benefiting the powerful capability of deep neural
networks to capture the complex and dynamic dependencies em-
bedded in sequences, a variety of deep learning-based sequential
recommendation methods [9, 10, 39] have been proposed. For ex-
ample, self-attention-based methods [12] have achieved very good
performance via utilizing the transformer architecture to learn
complex item-item relationships. Cen et. al. [3] have proposed a
novel controllable multi-interest framework, which can capture
multiple interests from user behavior sequences. Although great
progress has been achieved in the area of sequential recommen-
dation, most of the SRS methods only focus on learning users’
low-level preferences towards different items based on item ID
information. They generally ignore users’ high-level preferences
toward different types/categories of items. These works did not
comprehensively model the multi-granular preferences of users
and the different preference shift patterns at different levels.

2.2 Category-aware Preference Modeling
Although deep learning-based SRS methods achieve impressive
results, there are still only a few works focusing on modeling user
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hierarchical preference. Instead of using item IDs as only item at-
tribute as prior solutions, recent methods begin to take the side
information into consideration so as to better capture the user’s
preference. Zhang et. al. [42] propose the FDSA model, which com-
bines two separate branches of self-attention blocks for item ID and
side features and fuses them in the final stage. Then, Liu et. al. [15]
propose the NOVA-SR model, which feeds both the pure item id
representation and side information integrated representation to
the attention layer, where the latter is only used to calculate the
attention key and query and keeps the value non-invasive. Instead
of using early fusion to get item representation, Xie et. al. [35] pro-
pose the DIF model, decoupling the attention calculation process
of various side information to generate fused attention matrices for
higher representation power. Yuan et. al. [40] propose the ICAI-SR
model, which utilizes the attribute-to-item aggregation layer before
the attention layer to integrate side information into item repre-
sentation with separate attribute sequential models. Besides, Zhou
et. al. [44] propose to leverage self-supervised attribute prediction
tasks in the pre-training stage. However, recent works [14] find
that these implicit feature fusion methods do not well improve
recommendation performance, especially on highly-sparse datasets.
In contrast, explicitly learning intent sequences and item sequences
can improve sequential recommendation on sparse datasets.

2.3 Contrastive Sequential Recommendation
Due to its great success in the computer vision area [5], contrastive
learning (CL) has been widely introduced to more and more areas
including recommender systems [38]. The main idea of CL-based
recommendation is to design an auxiliary task to enhance the rec-
ommendation performance by data augmentation. Specifically, Yao
et. al. [36] propose a self-supervised learning (SSL) framework for
large-scale item recommendations, which uses both the masking
and dropout methods to augment the original data. Zhou et. al. [44]
propose four different types of self-supervised tasks to enhance the
recommendation model’s generalizability. Chen et. al. [6] utilize
the unlabelled user behavior sequences to learn the user’s intent
distribution functions and fuse it into the self-supervised learning
framework for sequential recommendations. In addition, there are
also some works focusing on the graph-based recommendation
with node-level contrastive learning [33, 37]. Although effective,
these CL-based RSs often manually augment the data by changing
the original data, which may introduce some unnecessary noise to
mislead user preference learning and the subsequent recommen-
dations. Meanwhile, these methods only use the item ID for con-
trastive learning, ignoring the constraints on the user’s preferred
item category, which may lead to a lack of category relevance in
the recommended item list.

3 METHODOLOGY
3.1 Problem Formulation
Let U and V be the user set and item set respectively. Let the
sequential recommendation dataset as D, which contains each
user-item interaction sequence in a certain timestamp. Then D =

{S1, ...S𝑖 , ...,S𝑛}, where 𝑆𝑖 means the unique sequence for user
𝑢𝑖 ∈ 𝑈 . For each 𝑢𝑖 , it is associated with a chronological sequence
of items interacted by him/her, denoted as S𝑖 =< O𝑖 , 𝑣𝑛 >, where

O𝑖 means the context information for 𝑢𝑖 , O𝑖 = {𝑉𝑖 ,𝐶𝑖 ,𝑇𝑖 }, 𝑉𝑖 =

{𝑣1, 𝑣2, ..., 𝑣𝑛−1} denotes the item ID sequence,𝐶𝑖 = {𝑐1, 𝑐2, ..., 𝑐𝑛−1}
denotes the item category sequence and 𝑇𝑖 = {𝑡1, 𝑡2, ..., 𝑡𝑛−1} de-
notes each timestamp sequence. (𝑛 is the length of the sequence.)
The task of sequential recommendation is to predict the next item
ID 𝑣𝑡 which may interest the user based on historical interaction
information O𝑖 . Specifically, for each user𝑢𝑖 , given the 𝑛−1 context
information O𝑖 , our task is to build a SRS model 𝑀 (i.e., HPM) to
learn the user preference dynamics from the O𝑖 and then generate
the recommended list which can best satisfy the user’s preference
at the moment 𝑡𝑛 .

3.2 Framework Overview
The framework for our proposed HPM is shown in Figure 2, which is
composed of three main components: (1) Dual Transformer (DT) for
hierarchical preference modeling, (2) Semantics-enhanced Context
Embedding Learning (SCEL), and (3) Dual hierarchical preference
Contrastive Learning (DCL).

3.3 Embedding Layers
We use two levels of embedding (item ID embedding and category-
type embedding) as the input to our model to better model pref-
erence dynamics throughout users’ interaction history. Also, we
use the classical TransE [1] method to pre-train the relationships
between items to enhance the semantic relevance of items the user
purchased. We use 𝐸 to represent all the embedding set, where
𝑒𝑣 ∈ 𝐸𝑉 denotes the item ID embedding, 𝑒𝑟 ∈ 𝐸𝑅 denotes the rela-
tion embedding and 𝑒𝑐 ∈ 𝐸𝐶 denotes the item category embedding.

Item ID Embedding. The input sequence is made up of item
IDs. To obtain a unique dense embedding for each item ID, we use
a linear embedding layer. For the user, the ID representation 𝑒𝑣 of
the item transitions relatively sharply, and this representation is
suitable for capturing rapid changes in user short-term preference.

Category Type Embedding. Similar to item ID embedding,
we use a linear embedding layer to represent category features 𝑒𝑐 .
For users, the high-level category preference changes relatively
smoothly. It is closer to the stable preference of the user.

Knowledge Graph Embedding. Meanwhile, we introduce
knowledge graph embedding to enhance the correlation among
items by modeling the direct semantic relationships between fea-
tures of items that users interact with. Without losing generality,
we follow the previous work [25] and use TransE [1] to pre-train
item and relation embeddings:

𝑓 (𝑣ℎ, 𝑟 , 𝑣𝑡 ) = ∥ev,h+er−ev,t∥22, 𝑓 (𝑐ℎ, 𝑟 , 𝑐𝑡 ) = ∥ec,h+er−ec,t∥22, (1)

where 𝑓 (·) denotes the loss function of TransE. 𝑣ℎ and 𝑣𝑡 denote
the IDs of head item and tail item respectively; 𝑐ℎ and 𝑐𝑡 denote
the category of items 𝑣ℎ and 𝑣𝑡 respectively while 𝑟 ∈ R denotes
the relation ID between items 𝑣ℎ and 𝑣𝑡 .

3.4 Dual Transformer for Hierarchical
Preference Modeling

To accurately model the hierarchical preference dynamics, we take
the state-of-the-art sequential recommendationmodel, SASRec [12],
as the base architecture of our proposed HPM model. SASRec uses
the self-attention transformer to capture users’ dynamic preference
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Figure 2: (a)The overall framework of our Hierarchical Preference modeling (HPM), which is composed of three main compo-
nents: Dual Transformer module for hierarchical preference modeling, Semantics-enhanced Context Embedding Learning
(SCEL), and Dual-Contrastive Learning (DCL) scheme; (b) Semantics-enhanced Context Embedding Learning (SCEL) leverages
the relations between context items and target items to enhance the representation of target item embedding.

over time. However, the existing SASRec model can only model
users’ preferences towards specific items at the item level based on
the ID information of items in sequences. It cannotmodel the coarse-
grained user preference at a higher level (e.g., item category level),
which are relatively stable and changes slowly compared with the
users’ fine-grained preferences towards items at the item level. To
well capture both the high-level user preference at the category
aspect and the low-level user preference shift at the item aspect for
better characterizing a user for the next-item recommendation, we
develop a novel Dual-Transformer (DT) module to equip the HPM
framework. DT module takes item ID 𝑉𝑖 and item category 𝐶𝑖 as
the input of every single transformer respectively.

We first obtain the pre-trained item embedding 𝐸𝑉 ∈ R |𝑉 |×𝑑

and category embedding 𝐸𝐶 ∈ R |𝐶 |×𝑑 in Section 3.3. Here |𝑉 |
and |𝐶 | denote the number of items and the number of categories
in the dataset respectively, and 𝑑 denotes the dimension of item
embedding and category embedding. To comprehensively capture
the order information over items in sequences, we introduce the
position embedding matrix 𝐸𝑃 ∈ R𝐿×𝑑 where 𝐿 is the length of
interaction sequences and 𝑑 is the embedding dimension. Based on
these learnable embedding matrices, we can obtain the embedding
vector 𝑒𝑣 = 𝐸𝑉 (𝑣𝑖 ) ∈ R1𝑥𝑑 of a given item 𝑣𝑖 , its category embed-
ding 𝑒𝑐 = 𝐸𝐶 (𝑐𝑖 ) ∈ R1𝑥𝑑 , and the embedding 𝑝𝑖 = 𝐸𝑃 (𝑝𝑖 ) ∈ R1𝑥𝑑

of the item position in the sequence. Therefore, given a user-item
interaction sequence S𝑖 of user 𝑢𝑖 , the position-sensitive represen-
tation of an item 𝑣𝑖 ∈ S𝑖 and the representation of its corresponding
category 𝑐𝑖 are calculated as:

𝑒𝑖,𝑣 = 𝑒𝑖,𝑣 + 𝑝𝑖 , 𝑒𝑖,𝑐 = 𝑒𝑖,𝑐 + 𝑝𝑖 , (2)

Once the item and category representations are ready, we choose
self-attention mechanism to well capture the relationships between
each interacted item in the sequence S𝑖 and their context infor-
mation in S𝑖 . Specifically, we choose multi-head self-attention to
model the 𝑛 − 1 historical items interacted by user 𝑢𝑖 to learn the
complex relationships between each item and its corresponding
contextual items in the sequence. Multi-head self-attention uses
different linear projection functions to map the history interac-
tion embedding into ℎ different sub-spaces so as to obtain richer
information from different subspaces.

After applying the self-attention mechanism to each head, we
first concatenate and then project the concatenated multi-head
embedding back to the same dimension of 𝑒𝑖,𝑣 . Specifically, the
multi-head attention model is formulated below:

MultiHead(𝐻𝑖,∗) =𝑊𝑂concat(head1; head2; · · · ; headℎ), (3)

head𝑖 = Attention
(
𝐻𝑖,∗𝑊

𝑄

𝑖
, 𝐻𝑖,∗𝑊𝐾

𝑖 , 𝐻𝑖,∗𝑊
𝑉
𝑖

)
, (4)
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A𝑖 = Attention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾⊤√︁
𝑑/ℎ

)
𝑉 , (5)

where 𝐻𝑖,∗ denotes all the context embeddings in the historical in-
teractions. ∗means the input can be item ID embedding 𝑒𝑣 sequence
or item category embedding 𝑒𝑐 sequence.𝑊

𝑄

𝑖
,𝑊𝐾

𝑖
,𝑊𝑉

𝑖
∈ 𝑅𝑑𝑥

𝑑
ℎ

are the linear transformation weight matrices of query, key and
value of the self-attention model respectively.𝑊𝑂 ∈ 𝑅𝑑𝑥𝑑 is the
transformation weight matrix of output. ℎ denotes the number of
heads. After the linear projection, we add the position-wise feed-
forward network to introduce the non-linearity into our model to
make it more powerful for capturing complex non-linear relations.
Meanwhile, following the successful practice in previous work [34],
we introduce the 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚, 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 , and residual connection
modules to reduce the over-fitting issue. The mathematical formu-
lations of these layers are given below:

𝐹𝐹𝑁 (A𝑖 ) = ReLU(A𝑖𝑊1 + 𝑏1)𝑊2 + 𝑏2, (6)

𝐻𝑖,∗ = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐻𝑖,∗ + 𝐷𝑟𝑜𝑝𝑜𝑢𝑡 (𝐹𝐹𝑁 (A𝑖 ))), (7)
where 𝐹𝐹𝑁 represents a fully connected feed-forward network
and 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 denotes a normalization layer. 𝐻𝑖,∗ represents ei-
ther 𝑒𝑣 or 𝑒𝑐 in the user sequence S𝑖 . For high- and low-level user
preference modeling, we have:

𝑣 𝑓 =
1
𝐿

𝐿∑︁
𝑙=1

𝑆𝑖,𝑣𝑙 , 𝑐 𝑓 =
1
𝐿

𝐿∑︁
𝑙=1

𝑆𝑖,𝑐𝑙 , (8)

where 𝑙 means the 𝑙-th position in sequence 𝑆𝑖 . We use the average
pooling operation to get the user item-level historical represen-
tation 𝑣 𝑓 and user category-level representation 𝑐 𝑓 respectively,
which comprehensively model both the low-level preference dy-
namics and high-level preference dynamics.

3.5 Semantics-enhanced Context Embedding
Learning

In the section, we will introduce our Semantic-enhanced Context
Embedding Learning (SCEL) module. Although the multi-granular
preference dynamics modeling can handle different-level user pref-
erence dynamics, there are many cases that only contain sparse
interactions in the short sequences. Hence, we propose to lever-
age the context relation information to enhance the representation
ability of short user sequences. Specially, our SCEL leverages the ex-
plicit relationship to enhance the connection between history items
and the target item. We mainly focus on the two different relations:
also_buy and also_view. However, we believe that the intensity of
the relationship among items is not fixed, but changes over time.
Thus, we need to introduce different temporal time functions to
model this kind of fluctuation.

For also_buy relations, we regard them as complementary re-
lations. For example, when a user bought an iPad, he has a very
high probability to buy an Apple pencil in the short term, which is
the bundle product of the iPad and shares the same brand with the
iPad. However, the probability of buying an Apple pencil decrease
as time goes by since the user preference shifts to another field.
Thus, it is suitable for us to choose a normal distribution to model
this user preference decay process:

𝜙1𝑣 (Δ𝑡) = 𝑁 (Δ𝑡 |0, 𝜎𝑣), 𝜙1𝑐 (Δ𝑡) = 𝑁 (Δ𝑡 |0, 𝜎𝑐 ), (9)

where Δ𝑡 denotes the time interval between the history item and
the target item. 𝑁 denotes the normal distribution. 0 denotes the ` =
0 and 𝜎𝑣 , 𝜎𝑐 denote the item id and category variance respectively.
𝜎𝑣 curves the corresponding item-level relation decay while 𝜎𝑐
curves the corresponding item-level relation decay, which can map
to the previous hierarchical preference modeling.

For also_view, we regard them as substitute relations. For in-
stance, if a user has bought an iPhone recently, he/she is unlikely
to buy the same type of product in the near future. But the prob-
ability would increase with time moves on, similar items would
also need to be replaced. User perhaps buys similar products in the
long term. Thus, we combine short-term negative- and long-term
positive temporal kernel functions.

𝜙2𝑣 (Δ𝑡) = −𝑁 (Δ𝑡 |0, 𝜎𝑣) + 𝑁 (Δ𝑡 |`𝑣, 𝜎𝑣), (10)

𝜙2𝑐 (Δ𝑡) = −𝑁 (Δ𝑡 |0, 𝜎𝑐 ) + 𝑁 (Δ𝑡 |`𝑐 , 𝜎𝑐 ), (11)
Then, incorporating both item and category temporal dynamics
of different relations, we can obtain the semantics-enhanced
context embedding of target item:

𝑒𝑣,𝑛 = 𝑒𝑣,𝑛 + 𝑒𝑟,𝑣, 𝑒𝑟,𝑣 =
∑︁
𝑟 ∈R

𝑓𝑟 (S𝑖,𝑣, 𝑡, 𝑒𝑣) · 𝑒𝑟 , (12)

𝑒𝑐,𝑛 = 𝑒𝑐,𝑛 + 𝑒𝑟,𝑐 , 𝑒𝑟,𝑐 =
∑︁
𝑟 ∈R

𝑓𝑟 (S𝑖,𝑐 , 𝑡, 𝑒𝑖 ) · 𝑒𝑟 (13)

𝑓𝑟1 (S𝑖,𝑣, 𝑣, 𝑡) =
∑︁
𝑣′,𝑡 ′

I𝑟 (𝑣, 𝑣 ′) · 𝜙 (𝑡 − 𝑡 ′), (14)

𝑓𝑟2 (S𝑖,𝑐 , 𝑐, 𝑡) =
∑︁
𝑐′,𝑡 ′

I𝑟 (𝑐, 𝑐′) · 𝜙 (𝑡 − 𝑡 ′), (15)

where 𝑒𝑣,𝑛, 𝑒𝑐,𝑛 denote the pre-trained target item embedding and
category embedding, 𝑟 denotes the different item relations between
history item S𝑖,∗ (∗ means both item ID 𝑣 and category 𝑐) and tar-
get item 𝑒𝑣,∗. 𝑒𝑟 denotes the embedding of relation. 𝐼𝑟 denotes the
indicator function, if history item has explicit relation with target
item, 𝐼 (𝑖, 𝑖′) = 1. 𝐼 (𝑖, 𝑖′) = 0 vice versa. We can treat the association
between history items and target item as a kind of multi-excitation,
which means the user multi-granularity history preference impact
on current user preference with dynamics. Since users’ interac-
tion behaviors always occur the relation-oriented patterns, the
semantics-enhanced context can better capture and incorporate
the hidden semantic relations between items to generate more in-
formative sequence context embedding for next-item prediction,
especially in sparse interaction situations.

3.6 Dual Hierarchical Preference Contrastive
Learning

Currently, contrastive learning tends to solve the data sparsity prob-
lem of sequential recommendation by providing additional super-
vised signals by augmenting the original sequences [6, 22, 34, 44].
However, current CL-based SRSs only involve a single contrast
based on the low-level preference indicated by item ID informa-
tion, overlooking the contrast built on the high-level preference
indicated by item category information, which results in the lack of
users’ high-level preference modeling and future demand may not
be substantially learned, especially on highly sparse datasets [14].
Also, the absence of category-level contrastive learning might cause
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the loss of some important constraint signal to connect (resp. dis-
tinguish) items from the same (resp. different) categories, further
impeding the recommendation performance.

Besides, current contrastive learning in RS adopts maximizing
the mutual information between different augmented views from
the original user sequence to enhance the model performance.
adopting augmentation such as reordering, random masking, and
dropout would disrupt intrinsic patterns within the raw data. Es-
pecially for the personalized sequential recommendation, these
approaches might perturb the temporal relationship among sequen-
tial items for each user, which is unsuitable for our SCEL module.

Furthermore, as aforementioned in the hierarchical preference
dynamics modeling, we observe that in most of the user’s inter-
action history sequence, the user’s preference for item categories
is more stable, and the interaction changes for actual single items
are more drastic. So for better preference dynamics modeling, it
is more suitable to adopt dual contrastive learning to model the
user hierarchical preference dynamics. To be more specific, we as-
sume that users have relatively stable and slow-changed high-level
(i.e. category) preferences. Besides, they have relatively drastic and
fast-changed low-level (i.e. item-ID) preferences. Both of them are
influenced by the aforementioned context information (Section 3.5).
Then based on this assumption, we propose Dual-Contrastive Learn-
ing (DCL) module i.e. category-level and item-level contrastive
learning) in terms of user high- and low-level preference, which
explicitly considers the dynamic changes in user preference. To
be specific, we utilize the history item embedding 𝑆𝑖,𝑣 and 𝑆𝑖,𝑐 as
hierarchical user representation, semantics-enhanced context em-
bedding of target item as a positive sample, other target items in
the same batch as negative samples.

L𝑐𝑙𝑖𝑡𝑒𝑚 (𝑒𝑣,𝑛, 𝑣 𝑓 ) = − log
exp(sim(𝑒𝑣,𝑛, 𝑣 𝑓 ))

exp(sim(𝑒𝑣,𝑛, 𝑣 𝑓 ))) +
∑
𝑣−
𝑓
∈𝑉𝑓

sim(𝑒𝑣,𝑛, 𝑣−𝑓 )
,

(16)

L𝑐𝑙𝑐𝑎𝑡𝑒 (𝑒𝑐,𝑛, 𝑐 𝑓 ) = − log
exp(sim(𝑒𝑐,𝑛, 𝑐 𝑓 ))

exp(sim(𝑒𝑐,𝑛, 𝑐 𝑓 ))) +
∑
𝑐−
𝑓
∈𝐶𝑓

sim(𝑒𝑐,𝑛, 𝑐−𝑓 )
,

(17)
𝑒𝑣,𝑛 denotes historical item ID representation and 𝑒𝑐,𝑛 denotes his-
torical category type representation. 𝑒𝑓 denotes the semantics-
enhanced context-customized embedding of the target item ID
and 𝑒𝑐 denotes the semantics-enhanced context-customized embed-
ding of the target category. sim(·) means the distance function, we
choose the cosine function to calculate the similarity between con-
text embedding and target item embedding. Thus, L𝑐𝑙𝑖𝑡𝑒𝑚 enhances
the item-level context-customized embedding learning for the low-
level user preference learning and L𝑐𝑙𝑐𝑎𝑡𝑒 enhances the category-
level context-customized embedding learning for the high-level
user preference learning. Combining with item- and category-level
CL, we get the final Dual Contrastive Learning (DCL) loss function:

L𝑐𝑙 = L𝑐𝑙𝑖𝑡𝑒𝑚 + L𝑐𝑙𝑐𝑎𝑡𝑒 . (18)

3.7 Training and Optimization
To learn the parameters of our HPM in the sequential recommen-
dation, we adopt the pairwise ranking loss (BPR loss) to optimize

our model:

L𝑟𝑒𝑐 = −
∑︁
𝑢∈U

𝑁𝑢∑︁
𝑖=1

log𝜎
(
𝑦𝑢𝑖 − 𝑦𝑢 𝑗

)
, (19)

𝑦𝑢𝑖 = 𝑒
𝑇
𝑣,𝑛𝑣 𝑓 ,𝑖 + 𝑒𝑇𝑐,𝑛𝑐 𝑓 ,𝑖 , 𝑦𝑢 𝑗 = 𝑒

𝑇
𝑣,𝑛𝑣 𝑓 , 𝑗 + 𝑒𝑇𝑐,𝑛𝑐 𝑓 , 𝑗 , (20)

where 𝜎 (·) represents the sigmoid function, 𝑦𝑢𝑖 represents the pref-
erence score of user 𝑢 to positive item 𝑖 while 𝑦𝑢 𝑗 represents the
preference score of user 𝑢 to negative item 𝑗 . Consequently, those
top-k items with high possibilities are selected according to 𝑦 to
form the recommendation list. We adopt multi-task learning opti-
mizing the ranking loss and contrastive loss jointly. The joint loss
is as follows:

L 𝑗𝑜𝑖𝑛𝑡 = L𝑟𝑒𝑐 + _L𝑐𝑙 . (21)
where _ means the CL loss coefficient, it controls the strength
of DCL. Our model is implemented using Pytorch 1.10 running
under Python 3.6.8 environment. Model parameters are learned by
minimizing the total loss L 𝑗𝑜𝑖𝑛𝑡 based on a mini-batch learning
procedure. More model training settings are discussed in Section
4.2.3. Our experiments are conducted with a single NVIDIA TITAN
RTX GPU with 24 GB RAM.

4 EXPERIMENTS
4.1 Data Preparation
We conduct extensive experiments on the public real-world Ama-
zon dataset [17], which has been commonly used for sequential
recommendations [8, 19]. Specifically, we choose six representa-
tive sub-datasets from Amazon dataset, which correspond to six
top-level product categories respectively: Grocery and Gourmet
Food (denoted as Grocery), Sports and Outdoors (Sports), Beauty,
Clothing Shoes and Jewelry (Clothing), Cellphones and Accessories
(Cellphones) and Toys and Games (Toys). We follow the commonly
followed practice [23–25, 34] in ReChorus experiment 1 to pre-
pare for the experimental data and build training-test instances.
Following the previous work [24, 25], we take the ’also buy’ as
complementary and ’also view’ as substitute relations. We further
introduce two extra item relations, namely ’same brand’ as com-
plementary and ’same category with similar price’ as substitute
relations.

We follow the common practice in handling sequential recom-
mendation datasets [23–25]. In detail, we only keep the ‘5-core’
datasets, in which all users and items have at least 5 interactions.We
set the maximum interaction history 𝑙𝑒𝑛(S𝑢 ) as 20. If the 𝑙𝑒𝑛(S𝑢 )
is more than 20, we adopt the latest 20 interactions; otherwise, we
pad them with 0 to make up to 20 interactions. Finally, we adopt the
leave-one-out evaluation by following previous works [4, 11, 23].
To be specific, we choose the most recent interacted item as the test
target item and the second last item as the validation target item.

4.2 Experimental Setting
4.2.1 Baselines for Comparisons. Our task is essentially the
next item prediction in sequence recommendation [9, 20, 30]. Hence,
we carefully select 13 representative and/or state-of-the-art ap-
proaches from different classes for sequential recommendation as
baselines. 1) Traditional sequential recommendationmethods:
1https://github.com/THUwangcy/ReChorus
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Table 1: Overall performance. Bold scores represent the highest results of all methods. Underlined scores stand for the highest
results from previous methods. We perform 5 times experiments and report the average result and our model achieves the
state-of-the-art result among all baseline models. ∗ denotes the improvement is significant at p < 0.05.

Dataset Metric FPMC GRU4Rec Caser SASRec TiSASRec SLRS+ Chorus DIF CL4Rec S3Rec ContraRec DuoRec KDA HPM Improv.

Beauty

HR@5 0.3392 0.3202 0.3210 0.3666 0.3872 0.4339 0.4536 0.4102 0.3754 0.3812 0.4012 0.4123 0.4921 0.5141∗ 4.78%
HR@10 0.4290 0.4311 0.4345 0.4590 0.4559 0.5337 0.5698 0.5209 0.4660 0.4810 0.4962 0.5039 0.6076 0.6298∗ 3.65%
HR@20 0.5393 0.5693 0.5757 0.5743 0.5700 0.6361 0.6838 0.6421 0.5830 0.6057 0.6065 0.6131 0.7221 0.7424∗ 2.81%
HR@50 0.7511 0.7973 0.8097 0.7756 0.7745 0.8033 0.8536 0.8284 0.8013 0.8146 0.8530 0.8033 0.8853 0.8961∗ 1.22%
NDCG@5 0.2558 0.2271 0.2246 0.2797 0.2904 0.3319 0.3386 0.3016 0.2842 0.3073 0.3406 0.3158 0.3666 0.3864∗ 5.40%
NDCG@10 0.2848 0.2628 0.2612 0.3094 0.3036 0.3642 0.3762 0.3374 0.3134 0.3379 0.3784 0.3454 0.4040 0.4239∗ 4.93%
NDCG@20 0.3125 0.2976 0.2967 0.3385 0.3324 0.3900 0.4050 0.3679 0.3429 0.3657 0.4058 0.3729 0.4329 0.4524∗ 4.50%
NDCG@50 0.3542 0.3426 0.3430 0.3782 0.3728 0.4232 0.4386 0.4048 0.3859 0.4041 0.4397 0.4104 0.4653 0.4830∗ 3.80%

Clothing

HR@5 0.2020 0.2142 0.2269 0.2301 0.2722 0.3029 0.3826 0.2977 0.2600 0.2787 0.3798 0.2781 0.3863 0.4526∗ 17.16%
HR@10 0.2834 0.3142 0.3354 0.3571 0.3808 0.3904 0.4916 0.4068 0.3693 0.3797 0.4891 0.3799 0.4991 0.5748∗ 15.17%
HR@20 0.4014 0.4517 0.4892 0.5097 0.5142 0.5004 0.6141 0.5403 0.5161 0.5166 0.6094 0.5155 0.6270 0.7064∗ 12.66%
HR@50 0.6553 0.7143 0.7531 0.7453 0.7405 0.6948 0.8046 0.7600 0.7839 0.7665 0.8028 0.7650 0.8317 0.8803∗ 5.84%
NDCG@5 0.1442 0.1461 0.1548 0.1642 0.1927 0.2329 0.2840 0.2130 0.1854 0.2016 0.2840 0.2012 0.2880 0.3387∗ 17.61%
NDCG@10 0.1703 0.1783 0.1897 0.1946 0.2278 0.2611 0.3192 0.2481 0.2206 0.2341 0.3193 0.2339 0.3244 0.3781∗ 16.55%
NDCG@20 0.2000 0.2130 0.2284 0.2349 0.2613 0.2888 0.3501 0.2817 0.2576 0.2686 0.3496 0.2680 0.3567 0.4114∗ 15.34%
NDCG@50 0.2499 0.2647 0.2807 0.2923 0.3060 0.3271 0.3878 0.3252 0.3103 0.3179 0.3879 0.3172 0.3973 0.4460∗ 12.26%

Sports

HR@5 0.3260 0.3015 0.3145 0.3414 0.3475 0.3900 0.4544 0.3945 0.3719 0.3960 0.4544 0.3948 0.4672 0.4984∗ 6.68%
HR@10 0.4373 0.4301 0.4423 0.4566 0.4608 0.4827 0.5823 0.5197 0.5035 0.5160 0.5823 0.5151 0.6021 0.6306∗ 4.73%
HR@20 0.5748 0.5918 0.6039 0.5943 0.6003 0.5961 0.7162 0.6612 0.6555 0.6567 0.7162 0.6553 0.7392 0.7638∗ 3.33%
HR@50 0.8070 0.8412 0.8496 0.8096 0.8131 0.7784 0.8855 0.8575 0.8652 0.8619 0.8855 0.8631 0.9042 0.9198∗ 1.72%
NDCG@5 0.2381 0.2085 0.2175 0.2494 0.2535 0.3013 0.3354 0.2852 0.2681 0.2906 0.3354 0.2894 0.3402 0.3708∗ 8.25%
NDCG@10 0.2740 0.2498 0.2588 0.2866 0.2901 0.3311 0.3767 0.3257 0.3106 0.3294 0.3767 0.3282 0.3838 0.4136∗ 8.99%
NDCG@20 0.3086 0.2905 0.2995 0.3214 0.3253 0.3597 0.4106 0.3615 0.3489 0.3648 0.4106 0.3636 0.4185 0.4474∗ 6.91%
NDCG@50 0.3546 0.3400 0.3484 0.3641 0.3675 0.3957 0.4443 0.4005 0.3907 0.4056 0.4443 0.4049 0.4515 0.4785∗ 5.98%

Cellphone

HR@5 0.4003 0.3015 0.3937 0.4439 0.4520 0.4696 0.4697 0.4718 0.4085 0.4505 0.4829 0.4745 0.5497 0.5835∗ 6.15%
HR@10 0.5098 0.4301 0.5309 0.5595 0.5767 0.5641 0.5929 0.5951 0.5415 0.5819 0.5994 0.5920 0.6745 0.7050∗ 4.52%
HR@20 0.6321 0.5918 0.6810 0.6817 0.7022 0.6637 0.7152 0.7157 0.6861 0.7147 0.7211 0.7151 0.7923 0.8225∗ 3.81%
HR@50 0.8277 0.8412 0.8849 0.8676 0.8708 0.8172 0.8695 0.8749 0.8825 0.8880 0.8831 0.8792 0.9263 0.9428∗ 1.78%
NDCG@5 0.3027 0.2085 0.2800 0.3353 0.3344 0.3634 0.3530 0.3526 0.2967 0.3287 0.3673 0.3602 0.4119 0.4487∗ 8.76%
NDCG@10 0.3381 0.2498 0.3243 0.3727 0.3748 0.3939 0.3929 0.3925 0.3396 0.3712 0.4050 0.3983 0.4523 0.4882∗ 7.94%
NDCG@20 0.3690 0.2905 0.3622 0.4036 0.4065 0.4191 0.4238 0.4230 0.3761 0.4047 0.4358 0.4294 0.4821 0.5179∗ 7.43%
NDCG@50 0.4077 0.3400 0.4028 0.4370 0.4401 0.4495 0.4545 0.4548 0.4152 0.4393 0.4681 0.4620 0.5089 0.5419∗ 6.48%

Toys

HR@5 0.3373 0.2902 0.2898 0.3602 0.3475 0.4368 0.4124 0.3843 0.3627 0.3759 0.4015 0.4001 0.4805 0.4927∗ 2.54%
HR@10 0.4233 0.4060 0.4103 0.4570 0.4608 0.5345 0.5203 0.4924 0.4643 0.4731 0.4958 0.4953 0.5882 0.6039∗ 2.67%
HR@20 0.5283 0.5546 0.5590 0.5700 0.6003 0.6440 0.6443 0.6149 0.5900 0.5972 0.6181 0.6164 0.7019 0.7211∗ 2.74%
HR@50 0.7482 0.8067 0.8107 0.7789 0.8131 0.8012 0.8277 0.8178 0.8208 0.8101 0.8256 0.8244 0.8772 0.8922∗ 1.71%
NDCG@5 0.2583 0.1974 0.1947 0.2738 0.2535 0.3490 0.3132 0.2829 0.2630 0.2811 0.3067 0.3046 0.3660 0.3807∗ 4.02%
NDCG@10 0.2860 0.2348 0.2336 0.3050 0.2901 0.3804 0.3480 0.3178 0.2957 0.3124 0.3371 0.3355 0.4007 0.4166∗ 3.97%
NDCG@20 0.3124 0.2721 0.2710 0.3334 0.3253 0.4081 0.3793 0.3488 0.3273 0.3437 0.3679 0.3660 0.4294 0.4462∗ 3.91%
NDCG@50 0.3556 0.3220 0.3207 0.3747 0.3675 0.4392 0.4156 0.3890 0.3707 0.3858 0.4089 0.4071 0.4642 0.4803∗ 3.47%

Grocery

HR@5 0.3618 0.3737 0.3145 0.3925 0.4069 0.4378 0.4513 0.4301 0.3669 0.4029 0.4268 0.4269 0.5168 0.5432∗ 5.11%
HR@10 0.4419 0.4793 0.4423 0.4801 0.5232 0.5523 0.5818 0.5376 0.4624 0.5051 0.5132 0.5127 0.6314 0.6476∗ 2.57%
HR@20 0.5432 0.6013 0.6039 0.5822 0.6350 0.6517 0.6956 0.6465 0.5737 0.6260 0.6170 0.6213 0.7401 0.7514∗ 1.53%
HR@50 0.7511 0.8245 0.8496 0.7709 0.8217 0.7995 0.8576 0.8273 0.7964 0.8202 0.8157 0.8190 0.8901 0.8999∗ 1.10%
NDCG@5 0.2816 0.2684 0.2175 0.2941 0.2906 0.3266 0.3223 0.3122 0.2702 0.2969 0.3291 0.3293 0.3892 0.4088∗ 5.04%
NDCG@10 0.3073 0.3024 0.2588 0.3231 0.3283 0.3637 0.3647 0.3470 0.2992 0.3299 0.3571 0.3570 0.4264 0.4428∗ 3.85%
NDCG@20 0.3328 0.3331 0.2995 0.3488 0.3565 0.3888 0.3934 0.3745 0.3286 0.3604 0.3831 0.3844 0.4539 0.4689∗ 3.30%
NDCG@50 0.3737 0.3772 0.3484 0.3861 0.3934 0.4180 0.4256 0.4104 0.3745 0.3988 0.4224 0.4235 0.4838 0.4985∗ 3.04%
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FPMC [20]: This model is based on personalized transition graphs
over underlying Markov chains and combines the matrix factor-
ization for sequential recommendation. GRU4Rec [9]: This model
uses the GRU to model the user interaction sequence for recom-
mendation. Caser [39]: This model embeds items in user interaction
history as image by using convolutional filters for recommendation.
SASRec [12]: This model leverages users’ longer-term semantics as
well as their recent actions simultaneously for the accurate next-
item recommendation. 2) Temporal sequential recommenda-
tion methods: TiSASRec [13]: This model leverages the timestamp
and time intervals between user-item interactions for the next item
prediction. SLRS+ [24]: SLRS combines Hawkes process and MF
into one framework for modeling the user repeat consumption in
sequential recommendation. Since the Amazon dataset removes
the repeat consumption in the test set, SLRS+ uses the Hawkes
process to model the relations including also view and also buy
behaviors. Chorus [25]: This model is a state-of-the-art method by
considering item relations and temporal evolution. KDA [23]: KDA
devises relational intensity and frequency-domain embeddings to
adaptively determine the importance of historical interactions. 3)
Category-aware sequential recommendation methods: DIF
[35]: DIF-SR diverts the side information into the attention layer and
decouples the attention calculation of various side information and
item representation. 4) Contrastive sequential recommenda-
tion methods: ContraRec: a novel context-context contrastive sig-
nals learning method for sequential recommendation [22]. CL4SRec:
This model utilizes the contrastive learning between augmented
historical sequences and original historical sequences [34]. S3Rec:
It designs four pretext tasks for context-aware recommendation
and then finetunes on the next-item recommendation task, which
is a state-of-the-art method based on self-supervised learning [44].
DuoRec: A CL-based SR model that utilizes both the feature-level
dropout masking and the supervised positive sampling to construct
contrastive samples [18].

4.2.2 EvaluationMetric. Weadopt the commonly usedNDCG@K
and Hit Rate@K to evaluate our model [12, 25]. 1) NDCG@K : a
position-aware ranking metric that takes the normalized value of
discounted cumulative gain. 2) Hit Rate@K : the fraction of times
that the ground-truth next item is among the top K items. Both of
them are applied with K chosen from {5,10,20,50}. We evaluate the
ranking results with 99 randomly selected negative items following
previous works [23–25]. Besides, a paired t-test with p<0.05 is used
for the significance test by following [26, 31].

4.2.3 Parameter Settings. For fair comparisons and constrained
by limited computing resources, we set the embedding size and
batch size as 64 for all the models. All the other model parame-
ters including hyper-parameters of both baseline methods and our
method are well-tuned in the same way on the validation set. In
the training process, we follow the previous setting [24][25][23],
setting the number of the negative sample as 1. For multi-head
self-attention based methods, the number of heads and layers are
tuned in {1,2,3,4} and {1,2,3} respectively. The maximum number of
training epochs for all the datasets is set to 200. If the model’s per-
formance on the validation set decreases for 10 consecutive rounds,
the training will early stop. For our model, we set the self-attention

layer as 1 and attention heads as 4, the dimension of the embed-
ding as 64, and _ as 1 after tuning, which are discussed carefully
during the experimental result analysis in Section 4.5. Then our
model is optimized by an Adam with a learning rate of 1e-5 for item
knowledge embedding pre-training and 1e-6 for the main model
training.

For achieving the best performance, we carefully tune the hyper-
parameters for all the baselines according to the result on the val-
idation set. In Caser, the number of horizon convolution kernels
is set as 64, the number of vertical convolution kernels is set as 32
and the union window size is set as 5. In GRU4Rec, the dimension
of the hidden layer is set as 64. In SASRec and TiSARS, the number
of heads is set as 1. In SLRS+ and Chorus, the learning rate is set as
5e-4. In KDA, the number of heads is set as 4 and the learning rate
is set as 1e-3. We will make our code and processed and splitted
data publicly available for reproduction once the review is finished.

4.3 Overall Performance Comparison
We compare our model with the baselines and show the comprehen-
sive results in Table 1. According to the results, deep learning-based
methods, such as the GRU-based method (GRU) and CNN-based
method (Caser), consistently outperform FPMC in most datasets.
Since such methods leverage more sequential information than
FPMC, they can capture more accurate user preference shifts. Self-
attention models like Transformer is currently the mainstream in
sequential modeling. The self-attention-based sequential recom-
mendation model has more than 5% performance improvement on
most datasets and evaluation metrics than previous methods, which
benefits from its ability to model the global context of item-feature
correlation.

Recent temporal sequential modeling methods introduce extra-
temporal signals to enhance the temporal correlation among items.
TiSASRec treats different user interaction histories as different time
interval sequences, which outperform SASRec on most datasets
and evaluation metrics. SLRS+ introduces the knowledge graph-
based relationship and uses the item multi-excitation to enhance
the correlation between the target item and user interaction his-
tory. Chorus further models the different situations of temporal
user-item interaction. KDA proposed the virtual item relation and
calculate the relational intensity and frequency embedding for the
history items. We can observe that explicit modeling of the relations
between items can effectively improve the model’s performance.
Especially, Chorus and KDA directly contain the temporal item
relation loss, which gains significant improvement in all datasets.

We also conduct experiments on different contrastive learning-
based sequential recommendation models. CL4SRec uses item crop-
ping, masking, and reordering as augmentations for contrastive
learning, which aims at setting two different views of the same
user sequence and maximizing them. S3Rec devises four different
pretext tasks to improve the quality of item representations, which
performs better than CL4SRec. ContraCL leverages more context in-
formation to conduct contrastive learning. DuoRec utilizes both the
feature-level dropout masking and the supervised positive sampling
to construct contrastive samples. The results actually surpass the
traditional SASRec methods especially when 𝐾 is large. Besides, the
category-aware SOTA method DIF-SR outperforms SASRec by at
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least 5% on both metrics on most datasets, proving the effectiveness
of side information.

Our proposed method combines the dual-transformer module,
the dual contrastive learning, and the semantics-enhanced context
embedding module, well estimating the user’s hierarchical pref-
erence dynamics. Finally, HPM consistently outperforms existing
methods on all datasets. The average improvements compared with
the best baseline range from 1.53% to 17.61% in HR and NDCG.
Especially in the Clothing, Sports datasets, our model achieves the
most impressive improvement, which might be attributed to that
they both have higher relational ratios in the test set. The higher
relation ratio can provide more stable semantic item relation signals
for our SCEL module.

4.4 Ablation Study
To verify the effectiveness of different modules in HPM, we comapre
the performance of the full model HPM with that of its three vari-
ants: 1) HPM-S: HPM without SCEL module. 2) SPM-O: We replace
the dual transformer structure with a single transformer. Besides,
in order to maintain the consistency of the input, we fused the item
id and category information, and then input them into a single
transformer. 3) HPM-C: HPM without DCL.

As Figure 3 illustrated, we conduct the ablation study of our
model on four different datasets. First of all, the variant HPM-S
reports the lowest performance consistently on all datasets, which
shows the importance of introducing the explicit relation into our
HPM framework. Especially on the sparse Clothing datasets, the
SCEL module is particularly important for enhancing the learning
of user preferences. Second, considering our hierarchical preference
structure’s importance on HPM, we can observe that SPM-O results
in the loss in all datasets compared to HPM. It indicates the signifi-
cance of the dual transformer to explicitly learns both high- and
low-level user preferences. Third, the comparison between HPM-
C and HPM proves the effectiveness of our DCL module. Finally,
HPM achieves the best results on all four datasets, showing the
superiority of our HPM framework.
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Figure 3: Ablation study of our model (HR@5 and NDCG@5)
(Upper left: Beauty, Upper right: Sports, Lower left: Cell-
phones, Lower right: Clothing).

4.5 Parameter Sensitivity Test
In order to evaluate the effect of different hyper-parameters on the
model performance, we conduct parameter sensitivity experiments

with ContraCL on the Clothing and Cellphone dataset. We first
evaluate the impact of different sizes of the model embedding size,
varying from 32 to 512, the _=1 and 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒=64 are fixed. As
Figure 4 shown, with the increase of the model embedding size,
both of them gain the corresponding improvement. Then we fix the
𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑠𝑖𝑧𝑒=64, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒=64 to figure out how contrastive
loss coefficient _ affects the model performance. The results in
Figure b) illustrate the model shows the upward trend from 0.5 to
1 then decreases, achieving the best performance when the coef-
ficient _ = 1, indicating the intensity of L𝑟𝑒𝑐 and L𝑐𝑙 should be
balanced. Finally, we check the impact of batch size on the model
performance. The performance of the model improves with the
increase in embedding size. A similar phenomenon was observed
on batch size, as a larger batch size provides more diverse negative
contrastive samples.
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model embedding size.

0.5 0.75 1 1.25

0.44

0.45

0.46

0.5 0.75 1 1.25
0.580

0.585

0.590

HR
@

5

Cellphone Dataset
Clothing Dataset

(b) Parameter sensitivity of _.

Figure 4: Parameter setting’s effect on the model perfor-
mance. (HR@5) on Amazon Clothing dataset.
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Figure 5: Parameter setting’s effect on the model perfor-
mance. (HR@5 andNDCG@5) onAmazonCellphone dataset.

5 CONCLUSION
In this paper, to effectively model the hierarchical preference dy-
namics of users in the sequential recommendation, which has not
been well addressed in the literature, we design a novel hierarchi-
cal preference modeling framework called HPM. HPM contains
three well-designed modules: Dual Transformer (DT) module, Dual-
Contrastive Learning (DCL) module, and Semantics-enhanced Con-
text Embedding Learning (SCEL) module, which work collabora-
tively to comprehensively learn users’ preference dynamics in both
item- and category-level. Extensive experiments analyses on real-
world datasets verify the superiority of our model over state-of-the-
art methods and the rationality of our design. In the future, we will
explore more effective methods for discriminatively modeling the
different preference-changing patterns at different levels.
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